所以距离=所以点到平面的距离为....4分 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6。
(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值。

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

以下四个命题:

    ①如果两个平面垂直,则其中一个平面内的任意一条直线都垂直于另一个平面内无数条直线;②设m、n为两条不同的直线,是两个不同的平面,若,③“直线”的充分而不必要条件是“垂直于在平面内的射影”;④若点P到一个三角形三条边的距离相等,则点P在该三角形所在平面上的射影是该三家形的内心。其中正确的命题序号为     

 

查看答案和解析>>

设A(x1,y1),B(x2,y2)是平面直角坐标系xOy上的两点,现定义由点A到点B的一种折线距离ρ(A,B)为p(A,B)=|x2-x1|+|y2-y1|。对于平面xOy上给定的不同的两点A(x1,y1),B(x2,y2),
(Ⅰ)若点C(x,y)是平面xOy上的点,试证明ρ(A,C)+ρ(C,B)≥p(A,B);
(Ⅱ)在平面xOy上是否存在点C(x,y),同时满足
①ρ(A,C)+ρ(C,B)=ρ(A,B);②ρ(A,C)=ρ(C,B)。
若存在,请求出所有符合条件的点;若不存在,请予以证明。

查看答案和解析>>


同步练习册答案