∴. ∴点E到平面ACD的距离为 -14分 方法二:⑴.同方法一. 查看更多

 

题目列表(包括答案和解析)

(08年三校联考)(12分) 如图,在长方体ABCD―A1B1­C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.

   (Ⅰ)求证:

   (Ⅱ)求二面角E―BD―A的大小;

   (Ⅲ)求点E到平面A­1BCD1­­的距离.

 

查看答案和解析>>

精英家教网如图,在长方体ABCD-A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.
(Ⅰ)求证:A1C∥平面BED;
(Ⅱ)求二面角E-BD-A的大小;
(Ⅲ)求点E到平面A1BCD1的距离.

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA,AB,AD两两互相垂直,已知AD∥BC,BC=2AD,E是PB的中点.
(1)求证:AE∥平面PCD;
(2)若平面PBC⊥平面PCD,PA=AB=6,BC=3,求点E到平面PCD的距离d;
(3)设二面角P-BC-D为45°,且PA=AD,求二面角B-PC-A的大小.

查看答案和解析>>

(2011•揭阳一模)如图①边长为1的正方形ABCD中,点E、F分别为AB、BC的中点,将△BEF剪去,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点P得一三棱锥如图②示.
(1)求证:PD⊥EF;
(2)求三棱锥P-DEF的体积;
(3)求点E到平面PDF的距离.

查看答案和解析>>

如图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为60°的二面角,连接PC、PD,在AD上取一点E使得3AE=ED,连接PE得到如图(图2)的一个几何体.
(Ⅰ)求证:平面PAB⊥平面PCD;
(Ⅱ)设PA=2,求点E到平面PBC的距离.

查看答案和解析>>


同步练习册答案