∴APCQ. ∴AQCP为平行四边形.-------------2分∴CP∥AQ. 查看更多

 

题目列表(包括答案和解析)

下列关于数列的说法:
①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar
②若数列{an}前n项和Sn=(n+1)2,则{an}是等差数列;
③若数列{an}满足an+1=2an,则{an}是公比为2的等比数列;
④若数列{an}满足Sn=2an-1,则{an}是首项为1,公比为2等比数列.
其中正确的个数为(  )

查看答案和解析>>

19、在数列{an}中,a1=0,an+1=2an+2(n∈N*).
(1)设bn=an+2,求数列{bn}的通项公式;
(2){an}中是否存在不同的三项ap,aq,ar(p,q,r∈N*)恰好成等差数列?若存在,求出p,q,r的关系;若不存在,说明理由.

查看答案和解析>>

如图,已知∠A=60°,P、Q分别是∠A两边上的动点.
(1)当AP=1,AQ=3时,求PQ的长;
(2)AP、AQ长度之和为定值4,求线段PQ最小值.

查看答案和解析>>

椭圆中心是原点O,它的短轴长为2
2
,右焦点F(c,0)(c>0),它的长轴长为2a(a>c>0),直线l:x=
a2
c
与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(Ⅰ)求椭圆的方程和离心率;
(Ⅱ)若
OP
OQ
=0
,求直线PQ的方程;
(Ⅲ)设
AP
AQ
 (λ>1),过点P且平行于直线l的直线与椭圆相交于另一点M,证明:
FM
=-λ
FQ

查看答案和解析>>

已知动点P在以F1(0,
2
2
)、F2(0,-
2
2
)为焦点的椭圆上C,且cos∠F1PF2的最小值为0,直线l与y轴交于点Q(0,m),与椭圆C交于相异两点A,B,且
AQ
=3
QB

(1)求椭圆C的方程;
(2)实数m的取值范围.

查看答案和解析>>


同步练习册答案