AQ平面ABCD,∴AQ⊥EP. ----------------------6分∵AB=2BC, P为AB中点, ∴AP=AD. 连PQ, ADQP为正方形.∴AQ⊥DP.-----------------------------------------8分又EP∩DP=P, ∴AQ⊥平面DEP. 查看更多

 

题目列表(包括答案和解析)

(2012•浙江)如图,在四棱锥P-ABCD中,底面是边长为2
3
的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2
6
,M,N分别为PB,PD的中点.
(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

如图,在矩形ABCD中,AB=
3
,BC=a,又PA⊥平面ABCD,PA=4.
(1)若在边BC上存在点Q,且使得PQ⊥QD,求a的取值范围;
(2)当BC边上存在唯一点Q,使PQ⊥QD时,求异面直线AQ与PD所成角的大小.

查看答案和解析>>

如图,在矩形ABCD中,AB=2BC,P、Q分别为线段AB、CD的中点.EP⊥平面ABCD.
(Ⅰ)求证:AQ∥平面CEP;
(Ⅱ)求证:平面AEQ⊥平面DEP;
(Ⅲ)若EP=AP,求二面角Q-AE-P的大小.

查看答案和解析>>

精英家教网如图,在矩形ABCD中,AB=2BC,P,Q分别为线段AB,CD的中点,EP⊥平面ABCD.
(1) 求证:AQ∥平面CEP;
(2) 求证:平面AEQ⊥平面DEP.

查看答案和解析>>

精英家教网如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥底面ABCD.
(1)求证:AQ∥平面CEP;
(2)求证:平面AEQ⊥平面DEP;
(3)若EP=AP=1,求三棱锥E-AQC的体积.

查看答案和解析>>


同步练习册答案