由M为PB中点.∴. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,且三角形PAD为等腰△,PA=PD.
(Ⅰ)求证AD⊥PB;
(Ⅱ)线段AP上是否存在点M,使得MD∥平面PBC?
并说明理由.

查看答案和解析>>

如图,在四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是梯形,ADBC且∠ADC=60°,BC=2AD=4.
(1)求证:DC⊥PA;
(2)在PB上是否存在一点M(不包含端点P,B)使得二面角C-AM-B为直二面角,若存在求出PM的长,若不存在请说明理由.

查看答案和解析>>

如图,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.那么四面体P-ABC的直度为多少?说明理由;

(2)在四面体P-ABC中,AP=AB=1,设.若动点M在四面体P-ABC表面上运动,并且总保持PB⊥AM.设为动点M的轨迹围成的封闭图形的面积关于角的函数,求取最大值时,二面角A-PB-C的正切值.

查看答案和解析>>

如图,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.那么四面体P-ABC的直度为多少?说明理由;

(2)如图,若四面体P-ABC中,AP=AB=1,AE⊥PB,垂足为E,AF⊥PC,垂足为F.设∠EAF=为△AEF面积的函数,求取最大值时二面角A-PB-C的大小.

查看答案和解析>>

已知中心在原点,焦点在x轴上的椭圆C的离心率为
1
2
,且经过点M(1,
3
2
)
,过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存直线l,满足
PA
PB
=
PM
2
?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案