∵AC=AB.∴AE⊥BC.∵平面ACB⊥平面BCD. ∴AE⊥平面BCD,∴FE是AF在平面BCD内的射影.∴AF⊥CD,即∠AFE就是二面角A―CD―B的平面角. ―――――――6分在等腰直角△ABC中.斜边BC=6, ∴AE=3.且CE=3, 查看更多

 

题目列表(包括答案和解析)

如图,在多面体ABCDE中,AE⊥面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
(1)求证:EF⊥平面BCD;
(2)求平面ECD和平面ACB所成的锐二面角的余弦值.

查看答案和解析>>

如图,在多面体ABCDE中,AE⊥面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值.

查看答案和解析>>

如图,在多面体ABCDE中,AE⊥面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值.

查看答案和解析>>

如图,在多面体ABCDE中,AE⊥面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
(1)求证:EF⊥平面BCD;
(2)求平面ECD和平面ACB所成的锐二面角的余弦值.

查看答案和解析>>

如图,在多面体ABCDE中,AE⊥面ABC,DB∥AE,且AC=AB=BC=AE=1,BD=2,F为CD中点.
(1)求证:EF⊥平面BCD;
(2)求平面ECD和平面ACB所成的锐二面角的余弦值.

查看答案和解析>>


同步练习册答案