解法二:设在翻转过程中.点M到平面CDE的距离为.点N到平面CDE的距离为.则.同理 查看更多

 

题目列表(包括答案和解析)

有一个长方体容器ABCD-A1B1C1D1,装的水占恰好占其容积的一半;α表示水平的桌面,容器一边BC紧贴桌面,沿BC将其翻转使之略微倾斜,最后水面(阴影部分)与其各侧棱的交点分别是EFGH(如图),设翻转后容器中的水形成的几何体是M,翻转过程中水和容器接触面积为S,则下列说法正确的是(  )

查看答案和解析>>

已知正方形ABCD边长为a,将△ABD沿正方形的对角线BD所在的直线进行翻转,在翻转过程中,说法不正确的是(  )
A、将△ABD沿BD翻转到任意位置时,直线AC与直线BD都垂直
B、当平面ABD垂直于平面BCD时,此时∠ACD=60°
C、沿BD翻转到某个位置时,使得三棱锥A-BCD体积最大值是
2
a3
12
D、沿BD翻转到任意位置时,三直线“AB与CD”,“AD与BC”,“AC与BD”均不垂直

查看答案和解析>>

(2013•湛江一模)如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE
(1)当平面A1DE⊥平面BCD时,求直线CD与平面A1CE所成角的正弦值;
(2)设M为线段A1C的中点,求证:在△ADE翻转过程中,BM的长度为定值.

查看答案和解析>>

已知数列满足(I)求数列的通项公式;

(II)若数列,前项和为,且证明:

【解析】第一问中,利用

∴数列{}是以首项a1+1,公比为2的等比数列,即 

第二问中, 

进一步得到得    即

是等差数列.

然后结合公式求解。

解:(I)  解法二、

∴数列{}是以首项a1+1,公比为2的等比数列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差数列.

     

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>


同步练习册答案