方法二:取BC的中点O.因为是等边三角形. 查看更多

 

题目列表(包括答案和解析)

(2011•洛阳二模)在三棱柱ABC-A1B1C1中,△ABC为正三角形,AA1=AC=2,∠A1AC=60°,平面A1ACC1⊥平面ABC1,N为BC的中点,点P在棱A1C1上,
A1P
A1C1

(1)当λ取什么值时,直线PN与平面ABC所成的角θ最大,并求此时θ的正弦值;
(2)求二面角C1-AN-C的余弦值.

查看答案和解析>>

(2012•枣庄二模)已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:DF⊥平面PAF;
(2)在线段AP上取点G使AG=
14
AP,求证:EG∥平面PFD.

查看答案和解析>>

(2012•奉贤区二模)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足
A1P
A1B1

(1)当λ取何值时,直线PN与平面ABC所成的角θ最大;
(2)在(1)的条件下,求三棱锥P-MNC的体积.

查看答案和解析>>

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,A A1=AB=AC=1,AB⊥AC,M、N分别是CC1,BC的中点,点P在直线A1B1上,且

(1)证明:无论入取何值,总有AM⊥PN;

(2)当入取何值时,直线PN与平面ABC所成的角θ最大?

并求该角取最大值时的正切值。

(3)是否存在点P,使得平面PMN与平面ABC所成的二面

角为30º,若存在,试确定点P的位置,若不存在,请说明理由。

查看答案和解析>>

(2012•吉林二模)如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD⊥平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.

查看答案和解析>>


同步练习册答案