∴四边形FGCD为平行四边形.∴FD∥GC.又GC面ABC. ∴FD∥面ABC.(2)∵AB=EA.且F为EB中点.∴AF⊥EB ① 又FG∥EA.EA⊥面ABC∴FG⊥面ABC ∵G为等边△ABC.AB边的中点.∴AG⊥GC.∴AF⊥GC又FD∥GC.∴AF⊥FD ② 查看更多

 

题目列表(包括答案和解析)

如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

判断下列命题的真假,并写出这些命题的否定:

(1)三角形的内角和为180°;

(2)每个二次函数的图象都开口向下;

(3)存在一个四边形不是平兴谋咝?

查看答案和解析>>

在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足.
(1)求线段PP′中点M的轨迹C的方程.
(2)过点Q(一2,0)作直线l与曲线C交于A、B两点,设N是过点(-
4
17
,0),且以言
a
=(0,1)
为方向向量的直线上一动点,满足
ON
=
OA
+
OB
(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线Z的方程;若不存在,说明理由.

查看答案和解析>>

精英家教网如图所示,已知正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BC,A1D1的中点.
(1)求证:四边形B1EDF为菱形;
(2)求A1C与DE所成的角的余弦值.

查看答案和解析>>


同步练习册答案