∵ , ∴PP1QQ1 .?由四边形PQQ1P1为平行四边形, 知PQ∥P1Q1? ? 查看更多

 

题目列表(包括答案和解析)

已知椭圆
x2
4
+
y2
9
=1
上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点(0,-
4
17
)
且平行于x轴的直线上一动点,满足
ON
=
OA
+
OB
(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>

抛物线有光学性质:由其焦点射出的光线经抛物线反象后,沿平行于抛物线对称轴的肖向射出,反之亦然.如图所示,今有抛物线C,其顶点是坐标原点,对称辅为x轴.开口向右.一光源在点M处,由其发出一条平行于x轴的光线射向抛物线C卜的点P(4.4),经抛物线C反射后,反射光线经过焦点F后射向抛物线C上的点Q,再经抛物线C反射后又沿平行于X轴的方向射出,途中经直线l:2x-4y-17=0上点N反射后又射回点M.
(1)求抛物线C的方程;
(2)求PQ的长度;
(3)判断四边形MPQN是否为平行四边形,若是请给出证明,若不是请说明理由.

查看答案和解析>>

(2012•邯郸模拟)已知两定点E(-2,0),F(2,0),动点P满足
PE
PF
=0
,由点P向x轴作垂线段PQ,垂足为Q,点M满足
PM
=
MQ
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,点N满足
ON
=
OA
+
OB
(O为原点),求四边形OANB面积的最大值,并求此时的直线l的方程.

查看答案和解析>>

已知P是圆x2+y2=9,上任意一点,由P点向x轴做垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)过点(0,-2)的直线l与曲线C相交于A、B两点,试问在直线y=-
1
8
上是否存在点N,使得四边形OANB为矩形,若存在求出N点坐标,若不存在说明理由.

查看答案和解析>>

已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.

(1)求曲线C的方程

(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足

(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.

 

查看答案和解析>>


同步练习册答案