将②代入①得 .|PQ|=2-4a≥6.故有a≤-1.“如果存在 并不意味着一定存在, 如何修改本题使其成为不存在的范例呢? 问题的提出既能延伸我们的思绪, 更能完善我们的知识技能, 无形中使解题能力得到逐渐的提升. 查看更多

 

题目列表(包括答案和解析)

在△中,∠,∠,∠的对边分别是,且 .

(1)求∠的大小;(2)若,求的值.

【解析】第一问利用余弦定理得到

第二问

(2)  由条件可得 

将    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

从方程中消去t,此过程如下:
由x=2t得,将代入y=t-3中,得到
仿照上述方法,将方程中的α消去,并说明它表示什么图形,求出其焦点.

查看答案和解析>>

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

从方程数学公式中消去t,此过程如下:
由x=2t得数学公式,将数学公式代入y=t-3中,得到数学公式
仿照上述方法,将方程数学公式中的α消去,并说明它表示什么图形,求出其焦点.

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>


同步练习册答案