设船速为v.显然时人是不可能追上小船.当km/h时.人不必在岸上跑.而只要立即从同一地点直接下水就可以追上小船.因此只要考虑的情况.由于人在水中游的速度小于船的速度.人只有先沿湖岸跑一段路后再游水追赶.当人沿岸跑的轨迹和人游水的轨迹以及船在水中漂流的轨迹组成一个封闭的三角形时.人才能追上小船.设船速为v.人追上船所用 查看更多

 

题目列表(包括答案和解析)

(2009•金山区二模)(1)设u、v为实数,证明:u2+v2
(u+v)2
2
;(2)请先阅读下列材料,然后根据要求回答问题.
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
1
2

证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=
2S
a+b+c
,类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S-ABC的体积为V,则r=(  )
A、
V
S1+S2+S3+S4
B、
2V
S1+S2+S3+S4
C、
3V
S1+S2+S3+S4
D、
4V
S1+S2+S3+S4

查看答案和解析>>

(2012•闸北区二模)如图,在正四棱锥P-ABCD中,PA=AB=2.
(1)求该正四棱锥的体积V;
(2)设E为侧棱PB的中点,求异面直线AE与PC所成角θ的大小.

查看答案和解析>>

(2010•通州区一模)设不等式组
-2≤x≤2
0≤y≤2
确定的平面区域为U,
x-y+2≥0
x+y-2≤0
y≥0
确定的平面区域为V.
(I)定义坐标为整数的点为“整点”.在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率;
(II)在区域U内任取3个点,记此3个点在区域V的个数为X,求X的概率分布列及其数学期望.

查看答案和解析>>

如图为河岸一段的示意图.一游泳者站在河岸的A点处,欲前往对岸的C点处,若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C.已知此人步行速度为v,游泳速度为0.5v.
(1)设∠BEC=θ,试将此人按上述路线从A到C所需时间T表示为θ的函数,并求自变量θ的取值范围;
(2)当θ为何值时,此人从A经E游到C所需时间T最小,其最小值是多少?

查看答案和解析>>

    例10  为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下:

 

贷款期(年数)

公积金贷款月利率(‰)

商业性贷款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问:
    (1)汪先生家每月应还款多少元?
    (2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?
    (参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   讲解  设月利率为r,每月还款数为a元,总贷款数为A元,还款期限为n月
  第1月末欠款数 A(1+r)-a
  第2月末欠款数 [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款数 [A(1+r)2-a (1+r)-a](1+r)-a
           =A(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款数 
    得:                                  

  对于12年期的10万元贷款,n=144,r=4.455‰
  ∴
  对于15年期的15万元贷款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月还款942.37+1268.22=2210.59元,后3年每月还款1268.22元.
  (2)至12年末,先生家按计划还款以后还欠商业贷款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上当月的计划还款数2210.59元,当月共还款43880.12元.   

    需要提及的是,本题的计算如果不许用计算器,就要用到二项展开式进行估算,这在2002年全国高考第(12)题中得到考查.

    例11  医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表. 已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.

(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)

(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)

天数t

病毒细胞总数N

1

2

3

4

5

6

7

1

2

4

8

16

32

64

 

 

 

 

 

 

 

 

讲解 (1)由题意病毒细胞关于时间n的函数为, 则由

两边取对数得    n27.5,

   即第一次最迟应在第27天注射该种药物.

(2)由题意注入药物后小白鼠体内剩余的病毒细胞为,

再经过x天后小白鼠体内病毒细胞为,

由题意≤108,两边取对数得

     故再经过6天必须注射药物,即第二次应在第33天注射药物.

    本题反映的解题技巧是“两边取对数”,这对实施指数运算是很有效的.

     例12 有一个受到污染的湖泊,其湖水的容积为V立方米,每天流出湖泊的水量都是r立方米,现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合,用g(t)表示某一时刻t每立方米湖水所含污染物质的克数,我们称为在时刻t时的湖水污染质量分数,已知目前污染源以每天p克的污染物质污染湖水,湖水污染质量分数满足关系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始质量分数.

(1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数; 

(2)求证:当g(0)< 时,湖泊的污染程度将越来越严重; 

(3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时污染水平的5%?

 讲解(1)∵g(t)为常数,  有g(0)-=0, ∴g(0)=   .                      

(2) 我们易证得0<t1<t2, 则

g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

∵g(0)?<0,t1<t2,e>e,

∴g(t1)<g(t2)    .                                                      

故湖水污染质量分数随时间变化而增加,污染越来越严重.                

(3)污染停止即P=0,g(t)=g(0)?e,设经过t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

=e,∴t= ln20,

故需要 ln20天才能使湖水的污染水平下降到开始时污染水平的5%.

高考应用性问题的热门话题是增减比率型和方案优化型, 另外,估测计算型和信息迁移型也时有出现.当然,数学高考应用性问题关注当前国内外的政治,经济,文化, 紧扣时代的主旋律,凸显了学科综合的特色,是历年高考命题的一道亮丽的风景线.

 


同步练习册答案