综上所述.当70<≤140时.应裁员人,当140<<210时.应裁员人. 在多字母的数学问题当中.分类求解时需要搞清:为什么分类?对谁分类?如何分类? 例9 某城市2001年末汽车保有量为30万辆.预计此后每年报废上一年末汽车保有量的6%.并且每年新增汽车数量相同.为保护城市环境.要求该城市汽车保有量不超过60万辆.那么每年新增汽车数量不应超过多少辆? 查看更多

 

题目列表(包括答案和解析)

过直线l:5x-7y-70=0上的点P作椭圆
x2
25
+
y2
9
=1
的切线PM、PN,切点分别为M、N,连接MN.
(1)当点P在直线l上运动时,证明:直线MN恒过定点Q.
(2)当MN∥l时,定点Q平分线段MN.

查看答案和解析>>

已知双曲线c:
x2
2
-y2=1
,设直线l过点A(-3
2
,0)

(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2)证明:当k>
2
2
时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
6

查看答案和解析>>

(2012•自贡三模)已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被C截得弦长为2
3
时,则a=
2
-1
2
-1

查看答案和解析>>

设直线l1:y=2x与直线l2:x+y=3交于点P.
(1)求点P的坐标;
(2)当直线l过点P,且与直线l1:y=2x垂直时,求直线l的方程.

查看答案和解析>>

精英家教网直线l:y=k(x-1)过已知椭圆C:
x2
a2
+
y2
b2
=1
经过点(0,
3
),离心率为
1
2
,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且
MA
AF
MB
BF
,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值,否则,说明理由;
(Ⅲ)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

    例10  为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下:

 

贷款期(年数)

公积金贷款月利率(‰)

商业性贷款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问:
    (1)汪先生家每月应还款多少元?
    (2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?
    (参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   讲解  设月利率为r,每月还款数为a元,总贷款数为A元,还款期限为n月
  第1月末欠款数 A(1+r)-a
  第2月末欠款数 [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款数 [A(1+r)2-a (1+r)-a](1+r)-a
           =A(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款数 
    得:                                  

  对于12年期的10万元贷款,n=144,r=4.455‰
  ∴
  对于15年期的15万元贷款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月还款942.37+1268.22=2210.59元,后3年每月还款1268.22元.
  (2)至12年末,先生家按计划还款以后还欠商业贷款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上当月的计划还款数2210.59元,当月共还款43880.12元.   

    需要提及的是,本题的计算如果不许用计算器,就要用到二项展开式进行估算,这在2002年全国高考第(12)题中得到考查.

    例11  医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表. 已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.

(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)

(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)

天数t

病毒细胞总数N

1

2

3

4

5

6

7

1

2

4

8

16

32

64

 

 

 

 

 

 

 

 

讲解 (1)由题意病毒细胞关于时间n的函数为, 则由

两边取对数得    n27.5,

   即第一次最迟应在第27天注射该种药物.

(2)由题意注入药物后小白鼠体内剩余的病毒细胞为,

再经过x天后小白鼠体内病毒细胞为,

由题意≤108,两边取对数得

     故再经过6天必须注射药物,即第二次应在第33天注射药物.

    本题反映的解题技巧是“两边取对数”,这对实施指数运算是很有效的.

     例12 有一个受到污染的湖泊,其湖水的容积为V立方米,每天流出湖泊的水量都是r立方米,现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合,用g(t)表示某一时刻t每立方米湖水所含污染物质的克数,我们称为在时刻t时的湖水污染质量分数,已知目前污染源以每天p克的污染物质污染湖水,湖水污染质量分数满足关系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始质量分数.

(1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数; 

(2)求证:当g(0)< 时,湖泊的污染程度将越来越严重; 

(3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时污染水平的5%?

 讲解(1)∵g(t)为常数,  有g(0)-=0, ∴g(0)=   .                      

(2) 我们易证得0<t1<t2, 则

g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

∵g(0)?<0,t1<t2,e>e,

∴g(t1)<g(t2)    .                                                      

故湖水污染质量分数随时间变化而增加,污染越来越严重.                

(3)污染停止即P=0,g(t)=g(0)?e,设经过t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

=e,∴t= ln20,

故需要 ln20天才能使湖水的污染水平下降到开始时污染水平的5%.

高考应用性问题的热门话题是增减比率型和方案优化型, 另外,估测计算型和信息迁移型也时有出现.当然,数学高考应用性问题关注当前国内外的政治,经济,文化, 紧扣时代的主旋律,凸显了学科综合的特色,是历年高考命题的一道亮丽的风景线.

 


同步练习册答案