题目列表(包括答案和解析)
⊙O1和⊙O2的极坐标方程分别为,.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式,,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I),,由得.所以.
即为⊙O1的直角坐标方程.
同理为⊙O2的直角坐标方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
y1-y2 | x1-x2 |
数列首项,前项和满足等式(常数,……)
(1)求证:为等比数列;
(2)设数列的公比为,作数列使 (……),求数列的通项公式.
(3)设,求数列的前项和.
【解析】第一问利用由得
两式相减得
故时,
从而又 即,而
从而 故
第二问中, 又故为等比数列,通项公式为
第三问中,
两边同乘以
利用错位相减法得到和。
(1)由得
两式相减得
故时,
从而 ………………3分
又 即,而
从而 故
对任意,为常数,即为等比数列………………5分
(2) ……………………7分
又故为等比数列,通项公式为………………9分
(3)
两边同乘以
………………11分
两式相减得
例10 为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下:
贷款期(年数)
公积金贷款月利率(‰)
商业性贷款月利率(‰)
……
11
12
13
14
15
……
……
4.365
4.455
4.545
4.635
4.725
……
……
5.025
5.025
5.025
5.025
5.025
……
汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问:
(1)汪先生家每月应还款多少元?
(2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?
(参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)
讲解 设月利率为r,每月还款数为a元,总贷款数为A元,还款期限为n月
第1月末欠款数 A(1+r)-a
第2月末欠款数 [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
第3月末欠款数 [A(1+r)2-a (1+r)-a](1+r)-a
=A(1+r)3-a (1+r)2-a(1+r)-a
……
第n月末欠款数
得:
对于12年期的10万元贷款,n=144,r=4.455‰
∴
对于15年期的15万元贷款,n=180,r=5.025‰
∴
由此可知,
(2)至12年末,
其中A=150000,a=1268.22,r=5.025‰ ∴X=41669.53
再加上当月的计划还款数2210.59元,当月共还款43880.12元.
需要提及的是,本题的计算如果不许用计算器,就要用到二项展开式进行估算,这在2002年全国高考第(12)题中得到考查.
例11 医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表. 已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.
(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
|