(1)显然.若.则.即.此时 查看更多

 

题目列表(包括答案和解析)

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

鸡兔同笼

  你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

  你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

  解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.

  这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.

  化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.

1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.

2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

    例10  为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下:

 

贷款期(年数)

公积金贷款月利率(‰)

商业性贷款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问:
    (1)汪先生家每月应还款多少元?
    (2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?
    (参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   讲解  设月利率为r,每月还款数为a元,总贷款数为A元,还款期限为n月
  第1月末欠款数 A(1+r)-a
  第2月末欠款数 [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款数 [A(1+r)2-a (1+r)-a](1+r)-a
           =A(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款数 
    得:                                  

  对于12年期的10万元贷款,n=144,r=4.455‰
  ∴
  对于15年期的15万元贷款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月还款942.37+1268.22=2210.59元,后3年每月还款1268.22元.
  (2)至12年末,先生家按计划还款以后还欠商业贷款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上当月的计划还款数2210.59元,当月共还款43880.12元.   

    需要提及的是,本题的计算如果不许用计算器,就要用到二项展开式进行估算,这在2002年全国高考第(12)题中得到考查.

    例11  医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表. 已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.

(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)

(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)

天数t

病毒细胞总数N

1

2

3

4

5

6

7

1

2

4

8

16

32

64

 

 

 

 

 

 

 

 

讲解 (1)由题意病毒细胞关于时间n的函数为, 则由

两边取对数得    n27.5,

   即第一次最迟应在第27天注射该种药物.

(2)由题意注入药物后小白鼠体内剩余的病毒细胞为,

再经过x天后小白鼠体内病毒细胞为,

由题意≤108,两边取对数得

     故再经过6天必须注射药物,即第二次应在第33天注射药物.

    本题反映的解题技巧是“两边取对数”,这对实施指数运算是很有效的.

     例12 有一个受到污染的湖泊,其湖水的容积为V立方米,每天流出湖泊的水量都是r立方米,现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合,用g(t)表示某一时刻t每立方米湖水所含污染物质的克数,我们称为在时刻t时的湖水污染质量分数,已知目前污染源以每天p克的污染物质污染湖水,湖水污染质量分数满足关系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始质量分数.

(1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数; 

(2)求证:当g(0)< 时,湖泊的污染程度将越来越严重; 

(3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时污染水平的5%?

 讲解(1)∵g(t)为常数,  有g(0)-=0, ∴g(0)=   .                      

(2) 我们易证得0<t1<t2, 则

g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

∵g(0)?<0,t1<t2,e>e,

∴g(t1)<g(t2)    .                                                      

故湖水污染质量分数随时间变化而增加,污染越来越严重.                

(3)污染停止即P=0,g(t)=g(0)?e,设经过t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

=e,∴t= ln20,

故需要 ln20天才能使湖水的污染水平下降到开始时污染水平的5%.

高考应用性问题的热门话题是增减比率型和方案优化型, 另外,估测计算型和信息迁移型也时有出现.当然,数学高考应用性问题关注当前国内外的政治,经济,文化, 紧扣时代的主旋律,凸显了学科综合的特色,是历年高考命题的一道亮丽的风景线.

 


同步练习册答案