用数学归纳法证明=2n?1?3?5?-时.假设n=k时成立.若证n=k+1时也成立.两边同乘 查看更多

 

题目列表(包括答案和解析)

用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…·(2n-1)(n∈N*)时,假设n=k时成立,若证n=k+1时也成立,两边同乘(    )

A.2k+1             B.            C.  D.

查看答案和解析>>

用数学归纳法证明(n+1)·(n+2)·…·(n+11)=2n·1·3·…·(2n-1)(n∈N*),从“kk+1”右端需增乘的代数式为_________.

查看答案和解析>>

用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3•…•(2n-1)(n∈N)时,从“k”到“k+1”的证明,左边需增添的代数式是
 

查看答案和解析>>

用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3•5•…•(2n-1)时,从k变到k+1时,左边应增添的因式是(  )

查看答案和解析>>

用数学归纳法证明“(n+1)(n+2)•…•(n+n)=2n•1•3•…•(2n-1)”,当“n从k到k+1”左端需增乘的代数式为(  )
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+3
k+1

查看答案和解析>>

一、1.C  2.B  3.B  4.C  5.D  6.D    二、7.180°

8.1+

9.(1+  10.(2)(3)  11.两边同乘以

三、12.证明:(1)当n=1时,a1=<1,不等式成立.

(2)假设n=k(k≥1)时,不等式成立,即ak=<1

亦即1+22+33+…+kk<(k+1)k

当n=k+1时

ak+1=

==()k<1.

∴n=k+1时,不等式也成立.

由(1)、(2)知,对一切n∈N*,不等式都成立.

13.证明:(1)当n=1时,一个圆把平面分成两个区域,而12-1+2=2,命题成立.

(2)假设n=k(k≥1)时,命题成立,即k个圆把平面分成k2-k+2个区域.

当n=k+1时,第k+1个圆与原有的k个圆有2k个交点,这些交点把第k+1个圆分成了2k段弧,而其中的每一段弧都把它所在的区域分成了两部分,因此增加了2k个区域,共有k2-k+2+2k=(k+1)2-(k+1)+2个区域.

∴n=k+1时,命题也成立.

由(1)、(2)知,对任意的n∈N*,命题都成立.

14.解:(1)∵log2x+log2(3?2k-1-x)≥2k-1

,解得2k-1≤x≤2k, ∴f(k)=2k-2k-1+1=2k-1+1

(2)∵Sn=f(1)+f(2)+…+f(n)=1+2+22+…+2n-1+n=2n+n-1

∴Sn-Pn=2n-n2

n=1时,S1-P1=2-1=1>0;n=2时,S2-P2=4-4=0

n=3时,S3-P3=8-9=-1<0;n=4时,S4-P4=16-16=0

n=5时,S5-P5=32-25=7>0;n=6时,S6-P6=64-36=28>0

猜想,当n≥5时,Sn-Pn>0

①当n=5时,由上可知Sn-Pn>0

②假设n=k(k≥5)时,Sk-Pk>0

当n=k+1时,Sk+1-Pk+1=2k+1-(k+1)2=2?2k-k2-2k-12(2k-k2)+k2-2k-1

=2(Sk-Pk)+k2-2k-1>k2-2k-1=k(k-2)-1≥5(5-2)-1=14>0

∴当n=k+1时,Sk+1-Pk+1>0成立

由①、②可知,对n≥5,n∈N*,Sn-Pn>0成立即Sn>Pn成立

由上分析可知,当n=1或n≥5时,Sn>Pn

当n=2或n=4时,Sn=Pn

当n=3时,Sn<Pn.   

 


同步练习册答案