题目列表(包括答案和解析)
(02年全国卷文)(本小题满分12分,附加题满分4分)
(I)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;
(II)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;
(III)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)
如果给出的是一块任意三角形的纸片(如图3),要求剪成一个直三棱柱,使它的全面积与给出的三角形的面积相等。请设计一种剪拼方法,用虚线标示在图3中,并作简要说明。
(本题满分12分)第一题满分5分,第二题满分7分.
已知复数,=2,是虚部为正数的纯虚数。
(1)求的模;(2)求复数。
(本小题满分12分)(原创题)
在平面直角坐标系中,已知,若实数使向量。
(1)求点的轨迹方程,并判断点的轨迹是怎样的曲线;
(2)当时,过点且斜率为的直线与此时(1)中的曲线相交的另一点为,能否在直线上找一点,使为正三角形(请说明理由)。
(本小题满分12分)
如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。
(1)求椭圆C的方程。
(2)证明:直线MA、MB与x轴围成一个等腰三角形。
(本题满分12分)第一题满分5分,第二题满分7分.
已知复数,=2,是虚部为正数的纯虚数。
(1)求的模;(2)求复数。
选择题(60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D.
A
C
A
B
B
A
C
A
C
B
填空题(16分)
13 14 15 16 8
17解:(1)由已知得, ………………6分
(2)………10分
=- ………12分
18解:(Ⅰ)(法一)f(x)的定义域为R。
,
所以f(x)在上单调递增,在上单调递减。……4分
所以f(x)值域为……6分
(法二)……4分
所以f(x)的值域是………6分
(法三)由绝对值的几何意义知f(x)=表示数轴上点P(x)到点M(2)与点N(-2)距离之和.……4分
所以f(x)的值域是.……6分
(Ⅱ)原不等式等价于:
①或②或③……11分
所以原不等式解集为……12分
19 解:设,由题意知, ……6分
又
所以双曲线方程为 ……10分
所以双曲线的渐近线方程为 ……12分
20解:(Ⅰ)由题意知方程的两根是
……4分
(Ⅱ)
在[-1,2]上恒成立,………6分
令
……8分
当x在[-1,2]上变化时,的变化情况如下:
x
-1
1
(1,2)
2
+
-
+
g(x)
ㄊ
极大值
ㄋ
极小值
ㄊ
2
所以当x=2时,,
所以c的取值范围为……12分
21解:(1)当n=1时,,当时,由得所以…………4分
所以数列是首项为3,公差为1的等差数列,
所以数列的通项公式为…………6分
(2)
22解 :(Ⅰ)由题设a=2,c=1从而所以椭圆的方程为: ………5分
(Ⅱ)由题意得F(1,0),N(4,0),设A(m,n)
则B(m,-n)( ①
设动点M(x,y).AF与BN的方程分别为:n(x-1)-(m-1)y=0 ② n(x-4)+(m-4)y=0 ③
由②③得:当时, 代入①得
当时,由②③得:,解得n=0,y=0与矛盾,所以的轨迹方程为。…………9分
(Ⅲ)△AMN的面积为△AFN与△MFN面积之和,且有相同的底边FN,当两高之和最大时,面积最大,这时AM应为特殊位置,所以猜想:当AM与x轴垂直时,△AMN的面积最大,|AM|=3,|FN|=3,这时,△AMN的面积最大最大值为………11分。
证明如下:设AM的方程为x=ty+1,代入得
设A,则有
令,则
因为,所以,即时有最大值3,△AMN的面积有最大值。……13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com