(2)记的前项和分别为.证明:. 查看更多

 

题目列表(包括答案和解析)

已知曲线C的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.

证明:是等比数列;

对一切恒成立时,求t的取值范围;

记数列{an}的前n项和为Sn,当时,试比较Snn + 7的大小,并证明你的结论.

查看答案和解析>>

     (13分) 已知曲线C的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.

(1)     证明:是等比数列;

(2)     当对一切恒成立时,求t的取值范围;

(3)     记数列{an}的前n项和为Sn,当时,试比较Snn + 7的大小,并证明你的结论.

查看答案和解析>>

(13分) 已知曲线C的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.
(1)    证明:是等比数列;
(2)    当对一切恒成立时,求t的取值范围;
(3)    记数列{an}的前n项和为Sn,当时,试比较Snn + 7的大小,并证明你的结论.

查看答案和解析>>

已知曲线C:f(x)=x2上的点A、An的横坐标分别为1和an(n=1,2,3,…),且a1=5,数列{xn}满足xn+1=tf(xn-1)+1(t>0且t≠,t≠1).设区间Dn=[1,an](an>1),当xn∈Dn时,曲线C上存在点Pn(xn,f(xn))使得xn的值与直线AAn的斜率之半相等.

(1)证明:{1+logt(xn-1)}是等比数列;

(2)当Dn+1Dn对一切n∈N*恒成立时,求t的取值范围;

(3)记数列{an}的前n项和为Sn,当t=时,试比较Sn与n+7的大小,并证明你的结论.

查看答案和解析>>

已知曲线C:f(x)=x2上的点A、An的横坐标分别为1和an(n=1,2,3,…),且a1=5,数列{xn}满足xn+1=tf(xn-1)+1(t>0且t≠,t≠1).设区间Dn=[1,an](an>1),当xn∈Dn时,曲线C上存在点Pn(xn,f(xn))使得xn的值与直线AAn的斜率之半相等.

(1)证明:{1+logt(xn-1)}是等比数列;

(2)当Dn+1Dn对一切n∈N*恒成立时,求t的取值范围;

(3)记数列{an}的前n项和为Sn,当t=时,试比较Sn与n+7的大小,并证明你的结论.

查看答案和解析>>

一.选择题

1―5  CBABA   6―10  CADDA

二.填空题

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答题

数学理数学理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

?

        cos              =

 

        由,  ,    即B=              (6分)

                                               (7分)

                                                        (9分)

                                                        (11分)

的取值范围是(,1                                                      (13分)

18.解:①设双曲线方程为:  ()                                 (1分)

由椭圆,求得两焦点,                                           (3分)

,又为一条渐近线

, 解得:                                                     (5分)

                                                    (6分)

②设,则                                                      (7分)

      

?                             (9分)

,  ?              (10分)

                                                (11分)

  ?

?                                        (13分)

  单减区间为[]        (6分)

 

②(i)当                                                      (8分)

(ii)当

,  (),

则有                                                                     (10分)

                                               (11分)

  在(0,1]上单调递减                     (12分)

                                                 (13分)

20.解:①       

                                                        (2分)

从而数列{}是首项为1,公差为C的等差数列

  即                                (4分)

 

   即………………※              (6分)

当n=1时,由※得:c<0                                                    (7分)

当n=2时,由※得:                                                 (8分)

当n=3时,由※得:                                                 (9分)

    (

                                          (11分)

                         (12分)

综上分析可知,满足条件的实数c不存在.                                    (13分)

21.解:①设过A作抛物线的切线斜率为K,则切线方程:

                                                                (2分)

    即

                                                                                                   (3分)

②设   又

     

                                                         (4分)

同理可得 

                                                (5分)

又两切点交于 

                               (6分)

③由  可得:

 

                                                (8分)

                  (9分)

 

 

 

                                                     (11分)

当且仅当,取 “=”,此时

                                       (12分)

22.①证明:由   

  即证

  ()                                    (1分)

  

      即:                          (3分)

  ()    

   

   

                                                         (6分)

②由      

数列

                                              (8分)

由①可知, 

                    (10分)

由错位相减法得:                                       (11分)

                                    (12分)

 

 


同步练习册答案