题目列表(包括答案和解析)
3 |
1 |
2 |
如图,是△的重心,、分别是边、上的动点,且、、三点共线.
(1)设,将用、、表示;
(2)设,,证明:是定值;
(3)记△与△的面积分别为、.求的取值范围.
(提示:
【解析】第一问中利用(1)
第二问中,由(1),得;①
另一方面,∵是△的重心,
∴
而、不共线,∴由①、②,得
第三问中,
由点、的定义知,,
且时,;时,.此时,均有.
时,.此时,均有.
以下证明:,结合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△的重心,
∴. ②
而、不共线,∴由①、②,得
解之,得,∴(定值).
(3).
由点、的定义知,,
且时,;时,.此时,均有.
时,.此时,均有.
以下证明:.(法一)由(2)知,
∵,∴.
∵,∴.
∴的取值范围
1 |
x+a |
1 |
x+a |
1 |
x+a |
| ||
2 |
x2 |
3 |
1 |
2 |
4
| ||
5 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com