题目列表(包括答案和解析)
已知递增等差数列满足:,且成等比数列.
(1)求数列的通项公式;
(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为,
由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。
解:(1)设数列公差为,由题意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,;当时,;
而,所以猜想,的最小值为. …………8分
下证不等式对任意恒成立.
方法一:数学归纳法.
当时,,成立.
假设当时,不等式成立,
当时,, …………10分
只要证 ,只要证 ,
只要证 ,只要证 ,
只要证 ,显然成立.所以,对任意,不等式恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式, …………10分
, …………12分
所以对,都有,可知数列为单调递减数列.
而,所以恒成立,
故的最小值为.
某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.
(Ⅰ)求数列,的通项公式;
(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.
【解析】本试题主要考查数列的通项公式的运用。
第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98
第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.
解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分
(Ⅱ)由于n,各年的产量如下表
n 1 2 3 4 5 6 7 8
an 100 110 120 130 140 150 160 170
bn 100 102 106 114 130 162 226 354
2015年底甲工厂将被乙工厂兼并
((本小题共13分)
若数列满足,数列为数列,记=.
(Ⅰ)写出一个满足,且〉0的数列;
(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com