题目列表(包括答案和解析)
已知数列的前n项和为,且,
(1)求数列的通项公式;
(2) 令,且数列的前n项和为,求;
(3)若数列满足条件:,又,是否存在实数,使得数列为等差数列?
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(1)证明数列是“平方递推数列”,且数列为等比数列;
(2)设(1)中“平方递推数列”的前项积为,
即,求;
(3)在(2)的条件下,记,求数列的前项和,并求使的的最小值.
设是各项均为非零实数的数列的前项和,给出如下两个命题上:
命题:是等差数列;命题:等式对任意()恒成立,其中是常数。
⑴若是的充分条件,求的值;
⑵对于⑴中的与,问是否为的必要条件,请说明理由;
⑶若为真命题,对于给定的正整数()和正数M,数列满足条件,试求的最大值。
在数列中,任意相邻两项为坐标的点均在直线上,数列
满足条件:.
(1)求数列的通项公式; (4分)
(2)若求成立的正整数的最小值. (8分)
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.
(1)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“M类数列”,则数列也是“M类数列”;
(3)若数列满足,,为常数.求数列前项的和.并判断是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列的相邻两项、,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com