⑴证明:∵当n>m时.总有 查看更多

 

题目列表(包括答案和解析)

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有数学公式(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有数学公式(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

设函数f(x)定义在R上,对于任意实数m,n,总有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1.

(1)证明:f(0)=1,且x<0时f(x)>1

(2)证明:函数在R上单调递减

(3)设,确定a的取值范围.

查看答案和解析>>


同步练习册答案