题目列表(包括答案和解析)
设函数(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性. (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.
(1)求函数f(x)的表达式;
(2)设数列{an},{bn}满足如下关系:an+1=,bn=(n∈N*),且b1=,求数列{bn}的通项公式,并求数列{(3n-1)bn}(n∈N*)前n项的和Sn.
(文)已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an},{bn}的通项公式an,bn;
(2)设Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
设函数,.
⑴当时,求函数图象上的点到直线距离的最小值;
⑵是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
已知,
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在处有极值,求的单调递增区间;
(Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com