(2)若求数列并求 查看更多

 

题目列表(包括答案和解析)

数列{an}的前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2),a1=1.
(1)证明:数列{
Sn
}
是等差数列.并求数列{an}的通项公式;
(2)若bn=
1
anan+1
,Tn=b1+b2+…+bn,求证:Tn
1
2

查看答案和解析>>

数列{an}中,an+1=
an2
2an-2
,n∈N*
(I)若a1=
9
4
,设bn=log
1
3
an-2
an
,求证数列{bn}是等比数列,并求出数列{an}的通项公式;
(II)若a1>2,n≥2,n∈N,用数学归纳法证明:2<an<2+
a1-2
2n-1

查看答案和解析>>

数列{an}中,a1=3,Sn为其前n项的和,满足Sn=Sn-1+an-1+2n-1(n≥2),令bn=
1
anan+1

(1)写出数列{an}的前四项,并求数列{an}的通项公式
(2)若f(x)=2x-1,求和:b1f(1)+b2f•(2)+…+bnf(n)
(3)设cn=
n
an
,求证:数列{cn}的前n项和Qn<2.

查看答案和解析>>

数列中,an>0,an≠1,且an+1=
3an
2an+1
(n∈N*).
(1)证明:an≠an+1
(2)若a1=
3
4
,计算a2,a3,a4的值,并求出数列的通项公式;
(3)若a1=a,求实数p(p≠0),使得数列{
p+an
an
}
成等比数列.

查看答案和解析>>

数列中,an>0,an≠1,且an+1=
3an
2an+1
(n∈N*).
(1)证明:an≠an+1
(2)若a1=
3
4
,计算a2,a3,a4的值,并求出数列的通项公式.

查看答案和解析>>


同步练习册答案