(2)由.且时..得.∴是以1为首项.为公差的等差数列. 查看更多

 

题目列表(包括答案和解析)

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

已知无穷数列{an}中,a1,a2,…,am是以10为首项,以-2为公差的等差数列;am+1,am+2,…,a2m是以为首项,以为公比的等比数列(m≥3,m∈N*);并且对一切正整数n,都有an+2m=an成立.
(1)当m=3时,请依次写出数列{an}的前12项;
(2)若a23=-2,试求m的值;
(3)设数列{an}的前n项和为Sn,问是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

已知无穷数列{an}中,a1,a2,…,am是以10为首项,以-2为公差的等差数列;am+1,am+2,…,a2m是以为首项,以为公比的等比数列(m≥3,m∈N*);并且对一切正整数n,都有an+2m=an成立.
(1)当m=3时,请依次写出数列{an}的前12项;
(2)若a23=-2,试求m的值;
(3)设数列{an}的前n项和为Sn,问是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>


同步练习册答案