而n = 1时.易知a1 = 1 < 3成立.所以? 10分 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

已知Sn是数列{
1
n
}的前n项和,
(1)分别计算S2-S1,S4-S2,S8-S4的值;
(2)证明:当n≥1时,S2^-S2n-1
1
2
,并指出等号成立条件;
(3)利用(2)的结论,找出一个适当的T∈N,使得ST>2010;
(4)是否存在关于正整数n的函数f(n),使得S1+S2+…+Sn-1=f(n)(Sn-1)对于大于1的正整数n都成立?证明你的结论.

查看答案和解析>>

已知等比数列{an}满足an>0,n=1,2,…,且a5•a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=
n2
n2

查看答案和解析>>

已知等比数列{an}满足an>0,n=1,2,…,且a3a2n-3=32n(n≥2),则当n≥1时,log3a1+log3a3+…log3a2n-1=
n2
n2

查看答案和解析>>

已知函数f(x)=
13
x3-(a+1)x2+4ax
,((a∈R)).
(Ⅰ)若函数y=f(x)在区间(-∞,0)上单调递增,在区间(0,1)上单调递减,求实数a的值;
(Ⅱ)若常数a<1,求函数f(x)在区间[0,2]上的最大值;
(Ⅲ)已知a=0,求证:对任意的m、n,当m<n≤1时,总存在实数t∈(m,n),使不等式f(m)+f(n)<2f(t)成立.

查看答案和解析>>


同步练习册答案