得 , ∴ , 查看更多

 

题目列表(包括答案和解析)

由(100展开所得的x的多项式中,系数为有理数的共有(    )

A.50项            B.17项             C.16项              D.15项

查看答案和解析>>

由(+100展开所得的x的多项式中,系数为有理数的共有(   

A.50   B.17   C.16   D.15

 

查看答案和解析>>

由(+100展开所得的x的多项式中,系数为有理数的共有(   

A.50   B.17   C.16   D.15

 

查看答案和解析>>

由“(a2+a+1)x>3,得x>
3a2+a+1
”的推理过程中,其大前提是
不等式两边同除以一个正数,不等号方向不改变
不等式两边同除以一个正数,不等号方向不改变

查看答案和解析>>

(Ⅰ)求证:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>


同步练习册答案