解:(1)由.得求得.-2分∴{an}的公差d=3 -------3分∴an=a1+ =3n-5-------6分 查看更多

 

题目列表(包括答案和解析)

已知数列满足,

(1)求证:数列是等比数列;

(2)求数列的通项和前n项和

【解析】第一问中,利用,得到从而得证

第二问中,利用∴ ∴分组求和法得到结论。

解:(1)由题得 ………4分

                    ……………………5分

   ∴数列是以2为公比,2为首项的等比数列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

如图,已知圆锥体的侧面积为,底面半径互相垂直,且是母线的中点.

(1)求圆锥体的体积;

(2)异面直线所成角的大小(结果用反三角函数表示).

【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。

第一问中,由题意,,故

从而体积.2中取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

解:(1)由题意,

从而体积.

(2)如图2,取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

 

查看答案和解析>>

已知函数f(x)=为常数。

(I)当=1时,求f(x)的单调区间;

(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。

【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是然后求导,,得到由,得0<x<1;由,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则在区间[1,2]上恒成立,即即,或在区间[1,2]上恒成立,解得a的范围。

(1)当a=1时,f(x)=,则f(x)的定义域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分

(2)。若函数f(x)在区间[1,2]上为单调函数,

在区间[1,2]上恒成立。∴,或在区间[1,2]上恒成立。即,或在区间[1,2]上恒成立。

又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>


同步练习册答案