②设当n=k时时.猜想成立.即. 7′ 查看更多

 

题目列表(包括答案和解析)

已知数列{an}满足an=
n
n-1
an-1-
1
3
n•(
2
3
)n(n≥2,n∈N*)
,首项为a1=
4
9

(1)求数列{an}的通项公式;
(2)记bn=
n-an
3n-2an
,数列{bn}的前n项和为Tn,求证:
3n-4
9
Tn
n
3

(3)设数列{cn}满足c1=
1
2
cn+1=
(
2
3
)
k+1
ak
c
2
n
+cn
,其中k为一个给定的正整数,
求证:当n≤k时,恒有cn<1.

查看答案和解析>>

(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,xn
a
-1

④对某个正整数k,若xk+1≥xk,则xk=[
a
]

其中的真命题有
①③④
①③④
.(写出所有真命题的编号)

查看答案和解析>>

幂函数y=
x
的图象上的点 Pn(tn2,tn)(n=1,2,…)与x轴正半轴上的点Qn及原点O构成一系列正△PnQn-1Qn(Q0与O重合),记an=|QnQn-1|
(1)求a1的值;   
(2)求数列{an}的通项公式 an
(3)设Sn为数列{an}的前n项和,若对于任意的实数λ∈[0,1],总存在自然数k,当n≥k时,3Sn-3n+2≥(1-λ)(3an-1)恒成立,求k的最小值.

查看答案和解析>>

已知数列{an}的前n项和为Sn=n2+1,数列{bn}满足:bn=
2
an+1
,前n项和为Tn,设Cn=T2n+1-Tn.   
(1)求数列{bn}的通项公式;
(2)是否存在自然数k,当n≥k时,总有Cn
16
21
成立,若存在,求自然数k的最小值.若不存在,说明理由.

查看答案和解析>>

已知在数列{an}中,a1=t,a2=t2,其中t>0,x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点
(Ⅰ)求数列{an}的通项公式
(Ⅱ)当t=2时,令bn=
an-1
(an+1)(an+1+1)
,数列{bn}前n项的和为Sn,求证:Sn
1
6

(Ⅲ)设cn=
1
2
an
(2n+1)(2n+1+1)
,数列{cn}前n项的和为Tn,求同时满足下列两个条件的t的值:
(1)Tn
1
6

(2)对于任意的m∈(0,
1
6
)
,均存在k∈N*,当n≥k时,Tn>m.

查看答案和解析>>


同步练习册答案