即第行的最后一个数是 ∴= 查看更多

 

题目列表(包括答案和解析)

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,……;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:

(1)试写出性质②所对应的组合数的另一个性质;

(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

(本题共2小题,第一小题4分,第二小题8分,共12分)

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:① 每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,;② 图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:

(1)试写出性质②所对应的组合数的另一个性质;

(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。

(1)到下午6时最后一辆车行驶了多长时间?

(2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?

【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆

则第15辆车在小时,最后一辆车出发时间为:小时

第15辆车行驶时间为:小时(1时40分)

第二问中,设每辆车行驶的时间为:,由题意得到

是以为首项,为公差的等差数列

则行驶的总时间为:

则行驶的总里程为:运用等差数列求和得到。

解:(1)第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆

则第15辆车在小时,最后一辆车出发时间为:小时

第15辆车行驶时间为:小时(1时40分)         ……5分

(2)设每辆车行驶的时间为:,由题意得到

是以为首项,为公差的等差数列

则行驶的总时间为:    ……10分

则行驶的总里程为:

 

查看答案和解析>>


同步练习册答案