题目列表(包括答案和解析)
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,……;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:.
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
(本题共2小题,第一小题4分,第二小题8分,共12分)
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:① 每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,;② 图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:.
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。
(1)到下午6时最后一辆车行驶了多长时间?
(2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?
【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆
则第15辆车在小时,最后一辆车出发时间为:小时
第15辆车行驶时间为:小时(1时40分)
第二问中,设每辆车行驶的时间为:,由题意得到
是以为首项,为公差的等差数列
则行驶的总时间为:
则行驶的总里程为:运用等差数列求和得到。
解:(1)第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆
则第15辆车在小时,最后一辆车出发时间为:小时
第15辆车行驶时间为:小时(1时40分) ……5分
(2)设每辆车行驶的时间为:,由题意得到
是以为首项,为公差的等差数列
则行驶的总时间为: ……10分
则行驶的总里程为:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com