假设数列中存在相邻三项成等比数列. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)
在数列中,已知,其中
(I)若,求数列的前n项和;
(II)证明:当时,数列中的任意三项都不能构成等比数列;
(III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。

查看答案和解析>>

数列项和为,首项为,满足

(1)求数列的通项公式;

(2)是否存在,使(其中是与自然数无关的常数),若存在,求出的值,若不存在,说明理由;

(3)求证:为有理数的充要条件是数列中存在三项构成等比数列.

查看答案和解析>>

给定项数为的数列,其中.

若存在一个正整数,若数列中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列是“k阶可重复数列”,

例如数列

因为按次序对应相等,所以数列是“4阶可重复数列”.

(Ⅰ)分别判断下列数列

      ②

是否是“5阶可重复数列”?如果是,请写出重复的这5项;

(Ⅱ)若数为的数列一定是 “3阶可重复数列”,则的最小值是多少?说明理由;

(III)假设数列不是“5阶可重复数列”,若在其最后一项后再添加一项0或1,均可使新数列是“5阶可重复数列”,且,求数列的最后一项的值.

查看答案和解析>>

(12分)已知等差数列中,前n项和满足:

(Ⅰ) 求数列的通项公式以及前n项和公式。

(Ⅱ)是否存在三角形同时具有以下两个性质,如果存在请求出相应的三角形三边

以及值:

(1)三边是数列中的连续三项,其中

(2)最小角是最大角的一半。

 

查看答案和解析>>

在等差数列和等比数列中,项和.

(1)若,求实数的值;

(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;

(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案