解:(1)由题意知数列是二阶等差数列且 查看更多

 

题目列表(包括答案和解析)

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

如图,已知圆锥体的侧面积为,底面半径互相垂直,且是母线的中点.

(1)求圆锥体的体积;

(2)异面直线所成角的大小(结果用反三角函数表示).

【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。

第一问中,由题意,,故

从而体积.2中取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

解:(1)由题意,

从而体积.

(2)如图2,取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

 

查看答案和解析>>

在等比数列中,

(1)求数列的通项公式; (2)求数列的前项和

【解析】第一问中利用等比数列中,两项确定通项公式即可

第二问中,在第一问的基础上,然后求和。

解:(1)由题意得到:

       ……6分

(2)      ……①

   …… ②

①-②得到

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>


同步练习册答案