解:原式= 查看更多

 

题目列表(包括答案和解析)

某农产品去年各季度的市场价格如下表:

今年某公司计划按去年各季度市场价格的“平衡价m”(平衡价m是这样的一个量:与上年各季度售价差比较,m与各季度售价差的平方和最小)收购该种农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a万吨,政府为了鼓励收购公司多收购这种农产品,决定将税率降低x个百分点,预测收购量可增加2x个百分点.

(Ⅰ)根据题中条件填空,m=________(元/吨);

(Ⅱ)写出税收y(万元)与x的函数关系式;

(Ⅲ)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x的取值范围.

查看答案和解析>>

某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.

(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;

(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由;

(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)

已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气.已知该净化设备的换气量是200m3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n次,且n趋向于无穷大.)

查看答案和解析>>

已知M=(1+cos2x,1),N=(1,sin2x+a),(x∈R,a∈R,a是常数),且y=(O为坐标原点)

(1)求y关于x的函数关系式y=f(x);

(2)若x∈[0,]时,f(x)的最大值为4,求a的值,并说明此时f(x)的图像可由y=2sin(x+)的图像经过怎样的变换而得到.

查看答案和解析>>

已知函数f(x)=x3+(m-4)x2-3mx+(n-6)(x∈R)的图象关于原点对称,m,n为实常数.

(1)求m,n的值;

(2)试用单调性的定义证明f(x)在区间[-2,2]上是单调函数

(3)当x∈[-2,2]时,不等式f(x)≥(n-logma)logma恒成立,求实数a的取值范围.

查看答案和解析>>

解答题:解答应写出文字说明.证明过程或演算步骤+

已知二次函数y=f(x)的图像经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图像上,

(1)

求数列{an}的通项公式

(2)

Tn是数列{bn}的前n项和,求使得Tn对所有n∈N*都成立的最小正整数m

查看答案和解析>>


同步练习册答案