而运用反序求和方法是比较好的想法. 查看更多

 

题目列表(包括答案和解析)

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

记等差数列{an}的前n项的和为Sn,利用倒序求和的方法得:Sn=
n(a1+an)
2
;类似地,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,将Tn表示成首项b1,末项bn与项数n的一个关系式,即Tn=
(b1bn)
n
2
(b1bn)
n
2

查看答案和解析>>

下列命题中①、归纳是由部分到整体、个别到一般的推理;②、类比是由特殊到特殊的推理;③、演绎推理是一般到特殊的推理;④从推理的结论来看,合情推理的结论不一定正确,有待证明,而演绎推理的结论是一定正确的;⑤、执因索果的证明方法是分析法.其中正确的个数是(  )

查看答案和解析>>

某班的54名同学已编学号为l,2,3,…,54,为了解该班同学的作业情况,老师收取了学号能被5整除的10名同学的作业本,这里运用的抽样方法是(  )

查看答案和解析>>

3、一个年级有12个班,每个班从1-50排学号,为了交流学习经验,要求每班的14参加交流活动,这里运用的抽样方法是(  )

查看答案和解析>>


同步练习册答案