题目列表(包括答案和解析)
函数是定义在上的奇函数,且。
(1)求实数a,b,并确定函数的解析式;
(2)判断在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数是定义在上的奇函数,且。
解得,
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为,并由此得到当,x=-1时,,当x=1时,
解:(1)是奇函数,。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为…………………………………………10分
当,x=-1时,,当x=1时,。
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
【解析】第一问定义域为真数大于零,得到..
令,则,所以或,得到结论。
第二问中, ().
.
因为0<a<2,所以,.令 可得.
对参数讨论的得到最值。
所以函数在上为减函数,在上为增函数.
(I)定义域为. ………………………1分
.
令,则,所以或. ……………………3分
因为定义域为,所以.
令,则,所以.
因为定义域为,所以. ………………………5分
所以函数的单调递增区间为,
单调递减区间为. ………………………7分
(II) ().
.
因为0<a<2,所以,.令 可得.…………9分
所以函数在上为减函数,在上为增函数.
①当,即时,
在区间上,在上为减函数,在上为增函数.
所以. ………………………10分
②当,即时,在区间上为减函数.
所以.
综上所述,当时,;
当时,
已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和
【解析】第一问,因为由题设可知
又 故
或,又由题设 从而
第二问中,
当时,,时
故时,
时,
分别讨论得到结论。
由题设可知
又 故
或,又由题设
从而……………………4分
(2)
当时,,时……………………6分
故时,……8分
时,
……………………10分
综上可得
已知幂函数满足。
(1)求实数k的值,并写出相应的函数的解析式;
(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到
因为,所以k=0,或k=1,故解析式为
(2)由(1)知,,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到
(1)对于幂函数满足,
因此,解得,………………3分
因为,所以k=0,或k=1,当k=0时,,
当k=1时,,综上所述,k的值为0或1,。………………6分
(2)函数,………………7分
由此要求,因此抛物线开口向下,对称轴方程为:,
当时,,因为在区间上的最大值为5,
所以,或…………………………………………10分
解得满足题意
P()是平面上的一个点,设事件A表示“”,其中为实常数.
(1)若均为从0,1,2,3,4五个数中任取的一个数,求事件A发生的概率;
(2)若均为从区间[0,5)任取的一个数,求事件A发生的概率.
【解析】本试题考查了几何概型和古典概型结合的一道综合概率计算试题。首先明确区域中的所有基本事件数或者区域表示的面积,然后分别结合概率公式求解得到。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com