由知.与同时为0或同时不为0 查看更多

 

题目列表(包括答案和解析)

用α、β、γ三个字母组成一个长度为(n+1)(n∈N*)个字母的字符串,要求由α开始,相邻两个字母不同.例如:n=1时,排出的字符串是αβ或αγ;n=2时,排出的字符串是αβα、αβγ、αγα、αγβ(如图).若记这种(n+1)个字符串中,最后一个字母仍是α的字符串的个数为an,可知a1=0,a2=2,a3=2,a4=6,…,则数列{an}的第n项an与第n-1项an-1(n≥2,n∈N*   

查看答案和解析>>

(2012•安庆模拟)用α、β、γ三个字母组成一个长度为(n+1)(n∈N*)个字母的字符串,要求由α开始,相邻两个字母不同.例如:n=1时,排出的字符串是αβ或αγ;n=2时,排出的字符串是αβα、αβγ、αγα、αγβ(如图).若记这种(n+1)个字符串中,最后一个字母仍是α的字符串的个数为an,可知a1=0,a2=2,a3=2,a4=6,…,则数列{an}的第n项an与第n-1项an-1(n≥2,n∈N*
an+an-1=2n-1,(n≥2)
an+an-1=2n-1,(n≥2)

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

对命题“abc推出ac”,关于真假问题,甲、乙两个学生的判断如下:甲生判断是真命题.理由是:由ab可知ab的方向相同或相反,由bc可知cb的方向相同或相反,从而有ac的方向相同或相反,故ac,即原命题为真命题;乙生判断是假命题.理由是:当两个非零向量a,c不平行,而b=0时,显然abbc,但不能推出abc,故此时结论不成立,即原命题为假命题.究竟甲、乙两生谁的判断正确呢?请给以分析.

查看答案和解析>>

已知两定点A(0,-1),C(0,2),动点M满足∠MCA=2∠MAC.

(Ⅰ)求动点M的轨迹Q的方程;

(Ⅱ)设曲线Q与y轴的交点为B,点B、F是曲线Q上两个不同的动点,且=0,直线AE与BF交于点P(x0,y0),求证:为定值;

(Ⅲ)在第(Ⅱ)问的条件下,求证:过点p′(0,y0)和点E的直线是曲线Q的一条切线.

(Ⅳ)在第(Ⅱ)问的条件下,试问是否存在点E使得(或),若存在,求出此时点E的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案