故与同时不为0.所以由(*)得 查看更多

 

题目列表(包括答案和解析)

若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:

分组

频数

频率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合计

50

1.00

(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;

(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;

(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。

【解析】(Ⅰ)

分组

频数

频率

[-3, -2)

 5

0.10

[-2, -1)

8

0.16 

(1,2]

 25

0.50

(2,3]

10

0.2

(3,4]

 2

0.04

合计

50

1.00

(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.

(Ⅲ)由题可知不合格的概率为0.01,故可求得这批产品总共有2000,故合格的产品有1980件。

 

查看答案和解析>>

已知公差不为0的等差数列{an}的首项a1=a(a∈R),设数列{an}的前n项和为Sn,且a1、a2、a4恰为等比数列{bn}的前三项.
(1)求数列{an}的通项公式及Sn
(2)当n≥2时,比较An=
1
S1
+
1
S2
+…+
1
Sn
Bn=
1
b1
+
1
b2
+…+
1
bn
的大小.(可使用结论:n≥2时,2n>n+1)

查看答案和解析>>

公差不为0的等差数列{an}中,a1=2,a2是a1与a4的等比中项.
(I)求数列{an}的公差d;
(II)记数列{an}的前20项中的偶数项和为S,即S=a2+a4+a6+…+a20,求S.

查看答案和解析>>

一个公差不为0的等差数列{an},首项为1,其第1、4、16项分别为正项等比数列{bn},的第1、3、5项.
(1)求数列{an},与{bn}的通项公式;
(2)记数列{an},与{bn}的前n项和分别为Sn与Tn,试求正整数m,使得Sm=T12
(3)求证:数列{bn}中任意三项都不能构成等差数列.

查看答案和解析>>

已知点P(x0,y0)是渐近线为2x±3y=0且经过定点(6,2
3
)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴A1A2的对称点,设直线PA1与QA2的交点为M(x,y),
(1)求双曲线C1的方程;
(2)求动点M的轨迹C2的方程;
(3)已知x轴上一定点N(1,0),过N点斜率不为0的直线L交C2于A、B两点,x轴上是否存在定点 K(x0,0)使得∠AKN=∠BKN?若存在,求出点K的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案