②假设当时命题成立.即成立. 查看更多

 

题目列表(包括答案和解析)

 已知命题及其证明:

(1)当时,左边=1,右边=所以等式成立;

(2)假设时等式成立,即成立,

则当时,,所以时等式也成立。

由(1)(2)知,对任意的正整数n等式都成立。      

经判断以上评述

A.命题、推理都正确      B命题不正确、推理正确 

C.命题正确、推理不正确      D命题、推理都不正确

 

查看答案和解析>>

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

已知命题1+2+22+…+2n-1=2n-1及其证明:
(1)当n=1时,左边=1,右边=21-1=1,所以等式成立;
(2)假设n=k时等式成立,即1+2+22+…+2k-1=2k-1 成立,
则当n=k+1时,1+2+22+…+2k-1+2k==2k+1-1,所以n=k+1时等式也成立,
由(1)(2)知,对任意的正整数n等式都成立,
判断以上评述

[     ]

A.命题、推理都正确
B.命题正确、推理不正确
C.命题不正确、推理正确
D.命题、推理都不正确

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>


同步练习册答案