解:(I)...因为..成等比数列. 查看更多

 

题目列表(包括答案和解析)

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC。

(I)     证明PC平面BED;

(II)   设二面角A-PB-C为90°,求PD与平面PBC所成角的大小

【解析】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。

从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。

解法一:因为底面ABCD为菱形,所以BDAC,又

【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点E的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。

 

查看答案和解析>>


同步练习册答案