题目列表(包括答案和解析)
某学生在证明等差数列前n项和公式时,证法如下:
(1)当n=1时,S1=a1显然成立。
(2)假设n=k时,公式成立,即Sn=ka1+。
当n=k+1时,
∴n=k+1时公式成立。
∴由(1)、(2)知,对n∈N,公式都成立。
以上证明错误的是( )
A.当n取第一个值1时,证明不对
B.归纳假设的写法不对
C.从n=k到,n=k+1的推理中未用归纳假设
D.从n=k到n=k+1的推理有错误
(1)当n=1时,S1=a1显然成立。
(2)假设n=k时,公式成立,即Sn=ka1+。
当n=k+1时,
∴n=k+1时公式成立。
∴由(1)、(2)知,对n∈N,公式都成立。
以上证明错误的是( )
A.当n取第一个值1时,证明不对
B.归纳假设的写法不对
C.从n=k到,n=k+1的推理中未用归纳假设
D.从n=k到n=k+1的推理有错误
已知是公差为d的等差数列,是公比为q的等比数列
(Ⅰ)若 ,是否存在,有?请说明理由;
(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;
(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
【解析】第一问中,由得,整理后,可得、,为整数不存在、,使等式成立。
(2)中当时,则
即,其中是大于等于的整数
反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)中设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
结合二项式定理得到结论。
解(1)由得,整理后,可得、,为整数不存在、,使等式成立。
(2)当时,则即,其中是大于等于的整数反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
由,得
当为奇数时,此时,一定有和使上式一定成立。当为奇数时,命题都成立
已知递增等差数列满足:,且成等比数列.
(1)求数列的通项公式;
(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为,
由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。
解:(1)设数列公差为,由题意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,;当时,;
而,所以猜想,的最小值为. …………8分
下证不等式对任意恒成立.
方法一:数学归纳法.
当时,,成立.
假设当时,不等式成立,
当时,, …………10分
只要证 ,只要证 ,
只要证 ,只要证 ,
只要证 ,显然成立.所以,对任意,不等式恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式, …………10分
, …………12分
所以对,都有,可知数列为单调递减数列.
而,所以恒成立,
故的最小值为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com