解:令分别表示甲.乙.丙在第k局中获胜. (Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知.打满3局比赛还未停止的概率为 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

    某老板拟赞助甲,乙,丙,丁四位年轻人创业,现聘请了六位实业家,独立地对每位年轻人的创业方案进行投票,假设这六位实业家对甲,乙,丙,丁投票结果为“赞成”的概率分别为,若某年轻人没有人“赞成”,则老板只赞助他1万元,且每多获得一个人的“赞成”,就多给2万元的创业赞助;令分别表示甲,乙,丙,丁获得的赞助额。

写出的分布列和的数学期望与方差;(相应概率可用组合数表示)

试估计这位老板的赞助总额。

查看答案和解析>>

某老板拟赞助甲,乙,丙,丁四位年轻人创业,现聘请了六位实业家,独立地对每位年轻人的创业方案进行投票,假设这六位实业家对甲,乙,丙,丁投票结果为“赞成”的概率分别为
1
6
1
4
1
3
3
4
,若某年轻人没有人“赞成”,则老板只赞助他1万元,且每多获得一个人的“赞成”,就多给2万元的创业赞助;令ξ1,ξ2,ξ3,ξ4分别表示甲,乙,丙,丁获得的赞助额.
(1)写出ξ3的分布列和ξ3的数学期望与方差;(相应概率可用组合数表示)
(2)试估计这位老板的赞助总额.

查看答案和解析>>

某老板拟赞助甲,乙,丙,丁四位年轻人创业,现聘请了六位实业家,独立地对每位年轻人的创业方案进行投票,假设这六位实业家对甲,乙,丙,丁投票结果为“赞成”的概率分别为,若某年轻人没有人“赞成”,则老板只赞助他1万元,且每多获得一个人的“赞成”,就多给2万元的创业赞助;令ξ1,ξ2,ξ3,ξ4分别表示甲,乙,丙,丁获得的赞助额.
(1)写出ξ3的分布列和ξ3的数学期望与方差;(相应概率可用组合数表示)
(2)试估计这位老板的赞助总额.

查看答案和解析>>

在教学调查中,甲、乙、丙三个班的数学测试成绩分布如下图,假设三个班的平均分都是75分,s1,s2,s3分别表示甲、乙、丙三个班数学测试成绩的标准差,则有(  )

查看答案和解析>>

甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表,s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(  )
甲的成绩
环数 7 8 9 10
频数 5 5 5 5
乙的成绩
环数 7 8 9 10
频数 6 4 4 6
丙的成绩
环数 7 8 9 10
频数 4 6 6 4
A、s3>s1>s2
B、s2>s1>s3
C、s1>s2>s3
D、s2>s3>s1

查看答案和解析>>


同步练习册答案