题目列表(包括答案和解析)
(09年临沂高新区实验中学质检)(本小题满分12分)设的极小值为-8,其导函数的图象经过点,如图所示。
(1)求的解析式;
(2)若对恒成立,求实数m的取值范围。
(09年临沂高新区实验中学质检)(12分)
函数y=f(x)是定义域为R的奇函数,且对任意的x∈R,均有f(x+4)=f(x)成立,当x∈(0,2)时,f(x)=-x2+2x+1.
(1)当x∈[4k-2,4k+2](k∈Z)时,求函数f(x)的表达式;
(2)求不等式f(x)>的解集.
(09年临沂高新区实验中学质检)(12分)
甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船 不需要等等码头空出的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间是2小时,求它们中的任何一条船 不需要等待码头空出的概率.
(09年临沂高新区实验中学质检)(本小题满分12分)数列
(1)求证:数列是等比数列;
(2)求数列{}的通项公式;
(3)
(09年临沂高新区实验中学质检)(12分)
设数列{an}的各项都是正数,且对任意n∈N*,都有a13+a23+a33+…+an3=Sn2,其中Sn为数例{an}的前n项和.
(1)求证:an2=2Sn-an;
(2)求数列{an}的通项公式;
(3)设bn=3n+(-1)n-1λ?2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com