题目列表(包括答案和解析)
(本小题满分12分)在△OAB的边OA、OB上分别有一点P、Q,已知:=1:2, :=3:2,连结AQ、BP,设它们交于点R,若=a,=b. (Ⅰ)用a与 b表示;
(Ⅱ)过R作RH⊥AB,垂足为H,若| a|=1, | b|=2, a与 b的夹角的范围.
(本小题满分12分)
B两个投资项目的利润率分别为随机变量X1和X2.根据市场分析,X1,X2的分布列分别为
X1 | 5% | 10% |
P | 0.8 | 0.2 |
X2 | 2% | 8% | 12% |
P | 0.2 | 0.5 | 0.3 |
(Ⅰ)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1,DY2;
(Ⅱ)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得到利润的方差的和。求f(x)的最小值,并指出x为何值时,f(x)取到最小值。
(注:D(Ax+=b)=a2Dx)
(本小题满分12分)
已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为S,过点F2作直线与轨迹S交于P、Q两点,过P、Q作直线x=的垂线PA、QB,垂足分别为A、B,记λ=|AP|·|BQ|.
(1)求轨迹S的方程;
(2)设点M(-1,0),求证:当λ取最小值时,△PMQ的面积为9.
(本题满分12分)F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点.(Ⅰ)根据条件求出b和k满足的关系式;(Ⅱ)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com