}由18个基本事件组成.由于每一个基本事件被抽取的机会均等.因此这些基本事件的发生是等可能的. 查看更多

 

题目列表(包括答案和解析)

有三种产品,合格率分别为0.90,0.95,0.95,各抽取一件进行检验,

(1)求恰有一件不合格的概率;

(2)求至少有两件不合格的概率.

分析:恰有一件不合格分三种情况,可以看成由三个基本事件构成的,三个事件之间又是相互独立的,至少有两件不合格,正面考虑情况复杂,可考虑此事件的对立事件.

查看答案和解析>>

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;

(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生不全被选中的概率.下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(参考公式:其中.)

【解析】第一问利用数据写出列联表

第二问利用公式计算的得到结论。

第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得

解:(1) 列联表补充如下:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

20

25

女生

10

15

25

合计

30

20

50

(2)∵

∴有99.5%的把握认为喜爱打篮球与性别有关

(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8,

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得.

 

查看答案和解析>>

如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果都是等可能的,那么每一基本事件的概率都是_________.如果某一事件A包含的结果有m个,那么事件A的概率是P(A)=___________.

查看答案和解析>>

一个口袋内装有大小相同的3个红球和2个黄球,从中一次摸出两个球.
(1)问共有多少个基本事件;
(2)求摸出两个球都是红球的概率;
(3)求摸出的两个球都是黄球的概率;
(4)求摸出的两个球一红一黄的概率.

查看答案和解析>>

一个口袋内装有大小相同的5 个球,3个白球,2个黑球,从中一次摸出两个球.
求:(1)共有多少个基本事件;
    (2)摸出2个白球的概率.

查看答案和解析>>


同步练习册答案