题目列表(包括答案和解析)
(1)求恰有一件不合格的概率;
(2)求至少有两件不合格的概率.
分析:恰有一件不合格分三种情况,可以看成由三个基本事件构成的,三个事件之间又是相互独立的,至少有两件不合格,正面考虑情况复杂,可考虑此事件的对立事件.
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
|
|
|
50 |
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生和不全被选中的概率.下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中.)
【解析】第一问利用数据写出列联表
第二问利用公式计算的得到结论。
第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
, ,
基本事件的总数为8
用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于由 2个基本事件由对立事件的概率公式得
解:(1) 列联表补充如下:
|
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(2)∵
∴有99.5%的把握认为喜爱打篮球与性别有关
(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
, ,
基本事件的总数为8,
用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于由 2个基本事件由对立事件的概率公式得.
由9个互不 相 等 的 正 数 组 成 的 数 阵中,每 行 中 的 三 个 数 成 等 差 数 列,且、、成等比数列,下列四个判断正确的有 (A )
①第2列必成等比数列 ②第1列不一定成等比数列
③ ④若9个数之和等于9,则
(A)4个 (B)3个 (C)2个 (D)1个
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com