(3)当.变换过程如下: 1°将y=sin2x的图象向右平移个单位可得函数y=sin(2x-)的图象. 2°将所得函数图象上每个点的纵坐标扩大为原来的倍.而横坐标保持不变.可得函数y=sin(2x-)的图象. 3°再将所得图象向上平移一个单位.可得f+1的图象-- (其它的变换方法正确相应给分) 查看更多

 

题目列表(包括答案和解析)

精英家教网已知函数f(x)=Asin(ωx+φ),(A>0,ω<0,|φ|<
π2
)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当g(x)=f(x)-2cos2x时,如何由函数y=sinx的图象通过适当的变换得到函数y=g(x)的图象,写出变换过程.

查看答案和解析>>

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx),设f(x)=
a
b

(1)求函数f(x)的最小正周期;
(2)由y=sinx的图象经过怎样变换得到y=f(x)的图象,试写出变换过程;
(3)当x∈[0,
π
2
]时,求函数f(x)的最大值及最小值.

查看答案和解析>>

已知向量
a
=(sin2x,1),向量
b
=(
2
sin(x+
π
4
)
2cosx
,1),函数f(x)=λ(
a
b
-1)
(1)若x∈[-
8
π
4
]且当λ≠0时,求函数f(x)的单调递减区间;
(2)当λ=2时,写出由函数y=sin2x的图象变换到函数y=f(x)的图象的变换过程.

查看答案和解析>>

已知函数f(x)=
λsin2x(sinx+cosx)
2cosx
x∈[-
8
π
4
]
,(λ≠0)
(1)求函数f(x)的单调递增区间;
(2)当λ=2时,写出由函数y=sin2x的图象变换到与y=f(x)的图象重叠的变换过程.

查看答案和解析>>

已知向量
a
=(sin2x,1),向量
b
=(
2
sin(x+
π
4
)
2cosx
,1),函数f(x)=λ(
a
b
-1)

(1)x∈[-
8
π
4
],(λ≠0)
,求函数f (x)的单调递减区间;
(2)当λ=2时,写出由函数y=sin2x的图象变换到与y=f(x)的图象重叠的变换过程.

查看答案和解析>>


同步练习册答案