又==.所以. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.

(1)求证:

(2)若四边形ABCD是正方形,求证

(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。

【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF

第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

第三问中,设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

证明:(1)由圆柱的性质知:AD平行平面BCFE

又过作圆柱的截面交下底面于. 

又AE、DF是圆柱的两条母线

∥DF,且AE=DF     AD∥EF 

(2) 四边形ABCD是正方形  又

BC、AE是平面ABE内两条相交直线

 

(3)设正方形ABCD的边长为x,则在

 

由(2)可知:为二面角A-BC-E的平面角,所以

 

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 该函数的图象可由 的图象经过怎样的平移和伸缩变换得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一问中,

变换分为三步,①把函数的图象向右平移,得到函数的图象;

②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数的图象;

③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;

第二问中因为,所以,则,又 ,,从而

进而得到结论。

(Ⅰ) 解:

。…………………………………3

变换的步骤是:

①把函数的图象向右平移,得到函数的图象;

②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数的图象;

③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;…………………………………3

(Ⅱ) 解:因为,所以,则,又 ,,从而……2

(1)当时,;…………2

(2)当时;

 

查看答案和解析>>


同步练习册答案