题目列表(包括答案和解析)
已知函数 R).
(Ⅰ)若 ,求曲线 在点 处的的切线方程;
(Ⅱ)若 对任意 恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,.
因为切点为(), 则,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即即可。
Ⅰ)当时,.
,
因为切点为(), 则,
所以在点()处的曲线的切线方程为:. ……5分
(Ⅱ)解法一:由题意得,即. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以恒成立,
故在上单调递增, ……12分
要使恒成立,则,解得.……15分
解法二: ……7分
(1)当时,在上恒成立,
故在上单调递增,
即. ……10分
(2)当时,令,对称轴,
则在上单调递增,又
① 当,即时,在上恒成立,
所以在单调递增,
即,不合题意,舍去
②当时,, 不合题意,舍去 14分
综上所述:
某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且.
(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;
(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求;
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
【解析】第一问利用定义法求证单调性,并判定结论。
第二问(2)由函数的单调性知,
∴,即t的取值范围是.
当时,记
则
∵在上单调递减,在上单调递增,
第三问因为当且仅当时,.
故当时不超标,当时超标.
设椭圆 :()的一个顶点为,,分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线 与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。
解:(1)椭圆的顶点为,即
,解得, 椭圆的标准方程为 --------4分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线为,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直线的方程为或
即或
已知递增等差数列满足:,且成等比数列.
(1)求数列的通项公式;
(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为,
由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。
解:(1)设数列公差为,由题意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,;当时,;
而,所以猜想,的最小值为. …………8分
下证不等式对任意恒成立.
方法一:数学归纳法.
当时,,成立.
假设当时,不等式成立,
当时,, …………10分
只要证 ,只要证 ,
只要证 ,只要证 ,
只要证 ,显然成立.所以,对任意,不等式恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式, …………10分
, …………12分
所以对,都有,可知数列为单调递减数列.
而,所以恒成立,
故的最小值为.
1 |
2 |
1 |
2 |
1 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com