题目列表(包括答案和解析)
已知向量,且,A为锐角,求:
(1)角A的大小;
(2)求函数的单调递增区间和值域.
【解析】第一问中利用,解得 又A为锐角
第二问中,
由 解得单调递增区间为
解:(1) ……………………3分
又A为锐角
……………………5分
(2)
……………………8分
由 解得单调递增区间为
……………………10分
函数是定义在上的奇函数,且。
(1)求实数a,b,并确定函数的解析式;
(2)判断在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数是定义在上的奇函数,且。
解得,
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为,并由此得到当,x=-1时,,当x=1时,
解:(1)是奇函数,。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为…………………………………………10分
当,x=-1时,,当x=1时,。
本题满分12分,每小题各4分)
已知函数,
(1)若函数的值域为,求实数a的值;
(2)若函数的递增区间为,求实数a的值;
(3)若函数在区间上是增函数,求实数a的取值范围.
(本小题满分14分)
已知函数的单调递增区间为,
(Ⅰ)求证:;
(Ⅱ)当取最小值时,点是函数图象上的两点,若存在使得,求证:
(本题满分13分)设函数,已知,且,曲线在x=1处取极值.
|
(Ⅱ)如果当是与无关的常数时,恒有,求实数的最小值
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com