所求解析式为 查看更多

 

题目列表(包括答案和解析)

为了调查高中学生是否喜欢数学与性别的关系,某班采取分层抽样的方法从2011届高一学生中随机抽出20名学生进行调查,具体情况如下表所示.
喜欢数学 7 3
不喜欢数学 3 7
(Ⅰ)用独立性检验的方法分析有多大的把握认为本班学生是否喜欢数学与性别有关?
(参考公式和数据:
(1)k2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)
(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:
①抽到号码是6的倍数的概率;
②抽到“无效序号(序号大于20)”的概率.

查看答案和解析>>

为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
  喜欢看该节目 不喜欢看该节目 合计
女生   5  
男生 10    
合计     50
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
P(K2≥K) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

【解析】本小题考查直线方程的求法。画草图,由对称性可猜想

事实上,由截距式可得直线,直线,两式相减得,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求的直线OF的方程。

答案

查看答案和解析>>

为了调查高中学生是否喜欢数学与性别的关系,某班采取分层抽样的方法从2011届高一学生中随机抽出20名学生进行调查,具体情况如下表所示.
喜欢数学73
不喜欢数学37
(Ⅰ)用独立性检验的方法分析有多大的把握认为本班学生是否喜欢数学与性别有关?
(参考公式和数据:
(1)数学公式
(2)①当k2≤2.706时,可认为两个变量是没有关联的;②当k2>2.706时,有90%的把握判定两个变量有关联;③当k2>3.841时,有95%的把握判定两个变量有关联;④当k2>6.635时,有99%的把握判定两个变量有关联.)
(Ⅱ)若按下面的方法从这个20个人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:
①抽到号码是6的倍数的概率;
②抽到“无效序号(序号大于20)”的概率.

查看答案和解析>>

为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
  喜欢看该节目 不喜欢看该节目 合计
女生   5  
男生 10    
合计     50
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
P(K2≥K) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>


同步练习册答案